解题思路:(1)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
(2)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
(3)根据等腰三角形的性质和三角形内角和定理求出∠B,求出∠MNB=90°,根据三角形内角和定理得出∠NMB=90°-∠B即可.
(1)∵AB=AC,∠A=40°,
∴∠ABC=∠ACB=[1/2](180°-∠A)=70°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=20°.
(2)∵AB=AC,∠A=70°,
∴∠B=∠ACB=[1/2](180°-∠A)=55°,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=35°.
(3)∠NMB=[1/2]∠A,
理由是:∵AB=AC,
∴∠B=∠ACB=[1/2](180°-∠A)=90°-[1/2]∠A,
∵MN是AB的垂直平分线,
∴∠MNB=90°,
∴∠NMB=90°-∠B=90°-(90°-[1/2]∠A)=[1/2]∠A.
点评:
本题考点: 线段垂直平分线的性质;等腰三角形的性质.
考点点评: 本题考查了等腰三角形的性质,三角形内角和定理和线段垂直平分线性质的应用,主要考查学生的推理能力,求解过程类似.