(1)令x=y=0,则f(0)=2f(0),即f(0)=0;
令y=-x,则f(x-x)=f(x)+f(-x)=0,即f(x)=-f(-x)
故f(x)是奇函数;
(2)x1,x2∈[-3,3],令x2>x1,x2-x1>0
因为f(x)是奇函数,所以f(-x1)=-f(x1)
则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)
因为x>0时,f(x)<0
f(x2)-f(x1)>0即f(x2)
(1)令x=y=0,则f(0)=2f(0),即f(0)=0;
令y=-x,则f(x-x)=f(x)+f(-x)=0,即f(x)=-f(-x)
故f(x)是奇函数;
(2)x1,x2∈[-3,3],令x2>x1,x2-x1>0
因为f(x)是奇函数,所以f(-x1)=-f(x1)
则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)
因为x>0时,f(x)<0
f(x2)-f(x1)>0即f(x2)