tan(π/4+a)=[tan(π/4)+tana]/[1-tan(π/4)tana]
=(1+tana)/(1-tana)
=2
tana=1/3
sinacosa+cos²a
=(sinacosa+cos²a)/(sin^2a+cos^2a) (上下同除以cos^2a)
=(tana+1)/(1+tan^2a)
=4/3*9/10
=6/5
tan(π/4+a)=[tan(π/4)+tana]/[1-tan(π/4)tana]
=(1+tana)/(1-tana)
=2
tana=1/3
sinacosa+cos²a
=(sinacosa+cos²a)/(sin^2a+cos^2a) (上下同除以cos^2a)
=(tana+1)/(1+tan^2a)
=4/3*9/10
=6/5