求极限(sinx)^tanx,当x趋向与π/2的时候

1个回答

  • 我只想说,你给出的解题过程是错的,而且是没有道理的

    x→π/2

    lim (sinx)^tanx

    换元:t=π/2-x,x=π/2-t

    =lim(t→0) [sin(π/2-t)]^tan(π/2-t)

    =lim (cost)^cott

    =lim e^ln (cost)^cott

    根据复合函数的极限运算:lim(x→x0) f(g(x))=f(lim(x→x0) g(x))

    =e^ lim ln (cost)^cott

    现在考虑

    lim ln (cost)^cott

    =lim cott * ln cost

    =lim ln cost / tant

    =lim ln(1+cost-1) / tant

    利用等价无穷小:ln(1+x)~x,tanx~x

    =lim cost-1 / x

    再利用等价无穷小:1-cosx~x^2/2

    =-lim x^2 / 2x

    =-lim x/2

    =0

    因此

    lim(x→π/2) (sinx)^tanx

    =e^ lim(t→0) ln (cost)^cott

    =e^0

    =1

    有不懂欢迎追问