(2013•新余模拟)如图,在Rt△ABC中,∠C为直角,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交

1个回答

  • (1)设⊙O的半径为r,连接OD,

    ∵BC切⊙O于点D,

    ∴OD⊥BC,即∠ODB=90°,

    ∵∠C=90°,

    ∴∠C=∠ODB,

    ∵∠B=∠B,

    ∴△OBD∽△ABC,…(2分)

    又∵AC=8,AB=12,

    OD

    AC=

    OB

    AB,即

    r

    8=

    12−r

    12,

    解得:r=

    24

    5,

    ∴⊙O的半径为

    24

    5;…(4分)

    (2)四边形OFDE是菱形,理由为:…(5分)

    ∵四边形BDEF是平行四边形,

    ∴∠DEF=∠B,

    ∵∠DEF=

    1

    2∠DOB,

    ∴∠B=

    1

    2∠DOB,

    ∵∠ODB=90°,

    ∴∠DOB+∠B=90°,

    ∴∠DOB=60°,

    ∵DE∥AB,

    ∴∠ODE=60°,

    ∵OD=OE,

    ∴△ODE是等边三角形,

    ∴OD=DE,

    ∵OD=OF,

    ∴DE=OF,又DE∥OF,

    ∴四边形OFDE是平行四边形,…(7分)

    ∵OE=OF,

    ∴平行四边形OFDE是菱形.…(8分)