已知函数f(x)的定义域[-1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示

1个回答

  • 由f(x)的导函数y=f′(x)的图象可看出:如表格,

    由表格可知:函数f(x)在区间[-1,0)上单调递增,在区间(0,2)上单调递减,在区间(2,4)上单调递增,在区间(4,5]上单调递增.∴②正确.

    ∴函数f(x)在x=0和x=4时,分别取得极大值,在x=2时取得极小值,且由对应值表f(0)=2,f(2)=1.5,

    f(4)=2,又f(-1)=1,f(5)=1.

    ∴函数f(x)的值域为[1,2].∴①正确.

    根据已知的对应值表及表格画出图象如下图:

    ③根据以上知识可得:当x∈[-1,t]时,f(x)的最大值是2,则t=0,或4.故③不正确.

    ④由图象可以看出:当1.5<a<2时,函数y=f(x)-a有4个零点;当a=2时,函数y=f(x)-a有2个

    3零点;当a=1.5时,函数y=f(x)-a有3个零点;当1≤a<1.5时,函数y=f(x)-a有4个零点;

    ∴当1<a<2时,函数y=f(x)-a最多有4个零点.故④正确.

    综上可知①②④正确.

    故答案为①②④.