等比数列通项公式求解(或解二元三次方程)

1个回答

  • a1+a4=a1(1+q^3)=133,a2+a3=a1(q+q^2)=70

    所以a1(1+q^3)/a1(q+q^2)=(1+q^3)/(q+q^2)=133/70=19/10

    所以10+10q^3=19q+19q^2

    所以q=-1或者q=5/2或者q=2/5

    当q=-1的时候,a2+a3=a1+a4=0,不符题意,舍去

    当q=5/2的时候,a1=133/(1+125/8)=8,所以通项公式是an=8×(5/2)^(n-1)

    当q=2/5的时候,a1=133/(1+8/125)=125,所以通项公式是an=125×(2/5)^(n-1)