不等式左边随n增大递减,证明如下:
1/[(n+1)+1]+1/[(n+1)+2]+...+1/[2(n+1)+1]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]
=[1/(n+2)+1/(n+3)+...+1/(2n+1)+1/(2n+2)+1/(2n+3)]-[1/(n+1)+1/(n+2)+...+1/(2n+1)]
=1/(2n+2)+1/(2n+3) -1/(n+1)
=[1/(2n+2) -2/(2n+2)] +1/(2n+3)
=1/(2n+3) -1/(2n+2)
2n+3>2n+2,1/(2n+3)2011又 1/6,最小正整数a的值为2012.