证明“2个是不行的”
整数按被3除的余数,形式仅有:①3K、②3K - 1、③3K + 1,
则他们的平方分别为:9K²、9K²-6K+1、9K²+6K+1.
从上面看出,平方数被3除总是余0或1.
2010被3除余0,要使K=2,则2010是两个被3整除的平方数的和,即这两个平方根都是3的倍数.则两个平方数都是9的倍数.
推得当K = 2时,2010必须是9的倍数,与实际矛盾.
反证得 K = 2不成立.
当K = 3时,考虑到组合情况较多,成立的可能性大,则尝试一下有:
44^2 + 7^2 + 5^2 = 2010
40^2 + 19^2 + 7^2 = 2010
40^2 + 17^2 + 11^2 = 2010
……
综上,K最小为3