第一题
(1)∵(a-4)2+︳b+3︳=0
∴a=4,b=-3
∴A(0,4),B(0,-3)
∵S△ABC=(1/2)︱AB︱︱BC︱=(1/2)×7×︱BC︱=14
∴︱BC︱=4
∴C(4,-3)
(2)∵EF为∠AED的平分线
∴∠AEF=∠FED
∵∠FDO=90-∠ODE-∠FED
∴∠ADF=90-∠FDO-∠EDO=90-(90-∠ODE-∠FED)-∠EDO=∠FED
∴∠AEF=∠ADF
∵∠FDO=∠AEF
∴∠ADF=∠FDO
∴FD平分∠ADO
(3)∠MPQ=(1/2)∠NPD+∠DPM=(1/2)∠EAP+∠DPM
∠ECA=∠DPM+(180-∠M-∠EMC)
=∠DPM+(180-∠M-(1/2)∠AEC)
=∠DPM+90-(1/2)∠AEC
=∠DPM+90- (1/2) (180-∠EAP-∠ACE)
=∠DPM+(1/2)∠EAP+(1/2)∠ECA
∴(1/2)∠EAP=∠DPM+(1/2)∠EAP
∴∠MPQ/∠EAP=1/2
第二题
证明:(1)∵AB//EF
∴∠1=∠FEC
∵∠2=2∠1
∴∠2=2∠FEC
∵∠2=∠FEC+∠FCE
∴∠FEC=∠FCE
(2)∠CFM=2∠CMN
∵∠CFM=180-∠C-∠CMF
∴∠C+∠CMF=180-∠CFM
∵∠CMN=180-∠N-∠MEN=180-∠N-∠FEC=180-∠N-∠C=180-∠FMN-∠C
=180-(∠CMN+∠CMF)-∠C =180-∠CMN-(∠CMF+∠C)
∴∠CMN=180-∠CMN-(180-∠CFM)
∴∠CFM=2∠CMN
第三题
∠1=(1/3) ∠ACB+∠E=(1/3) ∠ACB+(180-(2/3) ∠ABC- (2/3) ∠ACB)=130
整理得:∠ACB+2∠ABC=150 ①
∠2=(1/3) ∠ABC+∠E=(1/3) ∠ABC+(180-(2/3) ∠ABC- (2/3) ∠ACB)=110
整理得:∠ABC+2∠ACB=210 ②
由方程①②解得:∠ACB=90,∠ABC=30
∴∠A=180-∠ACB-∠ABC=180-90-30=60
∵∠2=∠1+(1/3)∠ABC=110+(1/3)∠ABC=130
∴∠ABC=60
∴∠EBC=20
∴∠DCB=180-20-130=30
∴∠ACB=60
∴∠A=180-60-60=60
第四题
OE⊥OF
连接EF
∠ABC=∠BFE+∠BEF
∠ADC=∠DEF+∠DFE
∠ABC+∠ADC=∠BFE+∠BEF+∠DEF+∠DFE=180°
(∠BFE+∠BEF+∠DEF+∠DFE)/2=90°
(∠BFE+∠BEF+∠DEF+∠DFE)/2
=(2∠OFD+∠DFE+∠BEF+2∠OEB+∠BEF+∠DFE)/2
=∠OEF+∠OFE=90°
∠EOF=90°
第五题
BE⊥DE
连接BD
∠ABD+∠BDA=90
∠CBD+∠BDC=90
∠ABD+∠BDA+∠CBD+∠BDC=180
2∠CBE+∠CBD+∠BDA+∠CBD+2∠ADE+∠BDA=180
2∠CBE+2∠CBD+2∠BDA+2∠ADE=180
∠CBE+∠CBD+∠BDA+∠ADE=90
∠EBD+∠BDE=90
∴∠BED=90
∴BE⊥DE
BE∥DF,设BC与AD相交于点G,连接BD
∵∠C=90
∴∠CBD+∠BDC=90
∵∠CDF=(1/2)∠CDG=(1/2)(180-∠ADC)= (1/2)[180-(90-∠DGC)]=45+(1/2)∠DGC
∠CBE=(1/2)∠ABC=(1/2)(90-∠DGC)=45-(1/2)∠DGC
∴∠CDF+∠CBE=45+(1/2)∠DGC+45-(1/2)∠DGC=90
∴∠CBD+∠BDC+∠CDF+∠CBE=180
∴BE∥DF
BE⊥DE
连接BD
∵∠EBD=180-∠ABD-∠MBE=180-(90-∠ADB)-(∠EBD+∠CBD)=90+∠ADB-∠EBD-∠CBD
∴2∠EBD=90+∠ADB-∠CBD
∵∠EDB=180-∠BDC-∠EDN=180-(90-∠CBD)-(∠EDB+∠ADB)= 90-∠CBD-∠EDB-∠ADB
∴2∠EDB=90-∠CBD-∠ADB
∴2∠EBD+2∠EDB=90+∠ADB-∠CBD+90-∠CBD-∠ADB=180
∴∠EBD+∠EDB=90
∴BE⊥DE
第六题
∠BGC=60+∠BAE=60+2∠FAE
∠DCG=180-2∠FCE=180-2(56+∠FAE)=68-2∠FAE
∴∠BDC=∠BGC+∠DCG=60+2∠FAE+68-2∠FAE=128