设某产品的成本函数为C=aQ²+bQ+c,需求函数为Q=(d-P)/m,其中C为成本,Q为需求量(即产量),P为价格,a,b,c,d,m都是正的常数,且d>b,求利润最大时的产量及最大利润.
利润L=pQ-C=pQ-(aQ²+bQ+c)=-aQ²+(p-b)Q-c=-a{Q²-[(p-b)/a]Q}-c
=-a{[Q-(p-b)/(2a)]²-(p-b)²/(4a²]}-c=-a[Q-(p-b)/(2a)]²+(p-b)²/(4a)-c≦(p-b)²/(4a)-c
即当产量Q=(p-b)/(2a)时,便能获得最大利润Lmax=(p-b)²/(4a)-c=[(p-b)²-4ac]/(4a).