解题思路:(1)在
S
n
=
1
3
(
a
n
−1)
中,分别令n=1,2,3,能够求出a1,a2及a3的值.
(2)当n≥2时,
a
n
=
S
n
−
S
n−1
=
1
3
(
a
n
−1)−
1
3
(
a
n−1
−1)=
1
3
a
n
−
1
3
a
n−1
,所以
a
n
a
n−1
=−
1
2
.由此能求出an.
(1)当n=1时,a1=S1=
1
3(a1−1),得a1=−
1
2;
当n=2时,S2=a1+a2=
1
3(a2−1),得a2=
1
4,同理可得a3=−
1
8.
(2)当n≥2时,an=Sn−Sn−1=
1
3(an−1)−
1
3(an−1−1)=
1
3an−
1
3an−1,
∴[2/3an=−
1
3an−1,
所以
an
an−1=−
1
2].
∵a1=−
1
2,∴an=(−
1
2)n.
故数列{an}是等比数列,an=(−
1
2)n.
点评:
本题考点: 数列的应用.
考点点评: 本题考查数列的性质和应用,解题时要认真审题,仔细求解.