根据题意通项
an=(1+2+3+.+n)/(n+1)
=[(1+n)n/2]/(n+1)
=n/2
裂项:1/(an*an+1)=4/[n(n+1)]=4[1/n-1/(n+1)]
{1/(an*an+1)}的前n项和
Tn=4[1-1/2+1/2-1/3+1/3-1/4+.+1/n-1/(n+1)]
=4[1-1/(n+1)]
n-->∞时,Tn-->4
{1/(an*an+1)}的所有项的和为Tn的极限为4
根据题意通项
an=(1+2+3+.+n)/(n+1)
=[(1+n)n/2]/(n+1)
=n/2
裂项:1/(an*an+1)=4/[n(n+1)]=4[1/n-1/(n+1)]
{1/(an*an+1)}的前n项和
Tn=4[1-1/2+1/2-1/3+1/3-1/4+.+1/n-1/(n+1)]
=4[1-1/(n+1)]
n-->∞时,Tn-->4
{1/(an*an+1)}的所有项的和为Tn的极限为4