对于f(x)在x0点的泰勒公式,由于f'(x0)=f''(x0)=...=fn(x0)=0,所以泰勒公式中从第二项到第n项都为0,所以只剩下第一项和第n+1项,即f(x)=f(x0)+[f(n+1)(x0)/(n+1)!](x-x0)^(n+1),所以此式左右两边求导得f'(x)=[f(n+1)(x0)/n!](x-x0)^n.(1)若n为奇数,则在x0的左右两侧,(x-x0)^n符号相反,即f'(x)在x0左右两侧符号相反,即f(x)在x0左右两侧单调性相反,所以x0是f(x0)的极值点;(2)若n为偶数,同理可知,f'(x)在x0两侧符号相同,即此时f(x)在x0点不改变单调性,所以此时x0不是极值点.证毕
一道利用泰勒公式的证明题设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=
1个回答
相关问题
-
泰勒公式的证明题设lim(x->0)f(x)/x=1 且f''(x)>0 证明f(x)>=x
-
一道积分不等式的题设f(x)的的一阶导数在【0,1】上连续,且f(0)=0证明
-
设f(x)在[0,1]上有连续的一阶导数,且|f'(x)|≤M,f(0)=f(1)=0,证明:
-
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
-
设函数f(x)在x0处有三阶导数,且f"(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
-
高数证明题设函数f(x)在[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f`(0)=0,证明:在(-1
-
设f(x)有三阶导数,当x趋于x0时,f(x)是x-x0的二阶无穷小,问f(x)在x0处的泰勒展开式有何特点?
-
高等数学题一道设连续函数的定义域和值域都是[0,1],且f(0)=0,f(1)=1,f[f(x)]=x,证明f(x)=x
-
设f(x)有连续的导数,f(0)=0,且f'(0)=b,若函数F(x)=(f(x)+asinx)/x,x≠0;A,x=0
-
设函数f(x)在点x0附近有意义,且有f(x0+△x) - f(x0).下面那题也解