{an}为等差数列 求证(1)ak a(2k) a(3k) 构成等差数列 (2)a1+an=a(1+k)=a(n-k)(

1个回答

  • {an}为等差数列

    假设an=a1+(n-1)d,d为公差,a1为第一项

    则ak=a1+(k-1)d

    a(2k)=a1+(2k-1)d

    a(3k)=a1+(3k-1)d

    a(2k)-a(k)=[a1+(2k-1)d]-[a1+(k-1)d]=kd

    a(3k)-a(2k)=[a1+(3k-1)d]-[a1+(2k-1)d]=kd

    所以得证等差

    (2) 题目写错了,应该是a1+an=a(1+k)+a(n-k)

    a(1+k)+a(n-k)=a1+kd+a1+(n-k-1)d

    =2a1+(n-k-1+k)d

    =2a1+(n-1)d

    a1+an=a1+a1+(n-1)d

    =2a1+(n-1)d

    所以得证

    (3) Sk=(a1+ak)k/2=(2a1+(k-1)d)k/2

    S(2k)=(2a1+(2k-1)d)2k/2

    S(3k)=(2a1+(3k-1)d)3k/2

    所以[S(2k)-Sk]-Sk=[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]-(2a1+(k-1)d)k/2

    =[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)2k/2]

    =(2k-1)dk-(k-1)dk

    =k^2 *d

    [S(3k)-S(2k)]-[S(2k)-Sk]=[(2a1+(3k-1)d)3k/2-(2a1+(2k-1)d)2k/2]-[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]

    =k^2*d

    所以等差