π/2 =
在[ π/2 ,3π/2 ] 内,满足sinα≤1/2的α的取值范围
3个回答
相关问题
-
设α、β属于[-π/2,π/2],满足不等式sinαcosβ+sinβcosα=1,则sinα+sinβ的取值范围
-
cosα>sinα>tanα,其中(-π/2,π/2),则α取值范围
-
1.在0到2π内,求使sinα>(1/2)的角α的取值范围 2.在任意角范围内,求使sinα>(1/2)的角α的取值范围
-
已知α,β∈[-π/2,π/2] α+β<0,若sinα=1/3,sinβ=1-α,求实数α取值范围
-
若sinα>tanα>cotα(-π/2,π/2),则α的取值范围是() A(-π/2,-π/4) B(-π/4,0)
-
tan(3π-α)/sin(π-α)sin(3/2π-α)+sin(2π-α)cos(α-7/2π)/sin(3/2π+
-
设角α,β满足-π/2<α<β<π/2,则α-β的取值范围
-
若α+β=2/3π,则sin^2α+sin^2β的取值范围
-
已知1/2sin(α-π)=cos(α-2π),求sin(π-α)+5cos(2π-α)/3sin(3π/2+α-sin
-
..sin^2(π+α)*cos(π+α)*cos(-α-2π)/tan(π+α)*sin^3(π/2+α)*sin(-