(1)由 S n = n 2 a n (n∈N *),得 S n-1 =(n-1 ) 2 a n-1 (n≥2),
两式相减,得 a n = n 2 a n -(n-1 ) 2 a n-1 ,整理得
a n
a n-1 =
n-1
n+1 (n≥2),
∴n≥2时, a n = a 1 ×
a 2
a 1 ×
a 3
a 2 ×…×
a n
a n-1 =1×
1
3 ×
2
4 ×
3
5 ×…×
n-1
n+1 =
2
n(n+1) ,
又a 1=1适合上式,
∴ a n =
2
n(n+1) ;
(2)由(1)知, a n =
2
n(n+1) =2(
1
n -
1
n+1 ),
∴S n=2(1-
1
2 +
1
2 -
1
3 + …+
1
n -
1
n+1 )=2(1-
1
n+1 )=
2n
n+1 .