f(x)=√x^2+x+1 - x
=(√x^2+x+1 - x)(√x^2+x+1 + x)/(√x^2+x+1 + x)
=(x^2+x+1-x^2)/x(√1+1/x+1/x^2 + 1)
=(x+1)/x(√1+1/x+1/x^2 + 1)
=x(1+1/x)/x(√1+1/x+1/x^2 + 1)
=(1+1/x)/(√1+1/x+1/x^2 + 1)
limx->+∞f(x)=1/(√1+0+0 +1)
=1/2
f(x)=√x^2+x+1 - x
=(√x^2+x+1 - x)(√x^2+x+1 + x)/(√x^2+x+1 + x)
=(x^2+x+1-x^2)/x(√1+1/x+1/x^2 + 1)
=(x+1)/x(√1+1/x+1/x^2 + 1)
=x(1+1/x)/x(√1+1/x+1/x^2 + 1)
=(1+1/x)/(√1+1/x+1/x^2 + 1)
limx->+∞f(x)=1/(√1+0+0 +1)
=1/2