有点晕,图像画的不标准.
证明:(1)等腰三角形ACB内,AC=BC,点D是AB中点,故CD⊥AB
又AA1⊥平面ABC,∴AA1⊥CD ∴CD⊥平面ABB1A1
(2)故点D作DF⊥A1B,连接CF,∵CD⊥平面ABA1,∴CD⊥CF,故∠CFD即为所求角
RT△DFB内,DB=√2/2,tanA1BA=A1A/AB=1,∴∠A1BA=45°,∴DF=DB=√2/2,
CD=DB=√2/2,∴tan∠CFD=CD/DF=1,故所求角为45°
(3)S△B1BC=1/2*BB1*BC=√2/2,AC=1,∴VA-BCB1=1/3*√2/2*1=√2/6,即三棱锥B1- A1BC的体积为√2/6
(4)连接AC1交A1C于O,连接BC1,BB1则AC1⊥A1C,∵BC平面ACC1A1,故BC⊥AC1,
∴AC1⊥平面A1BC,RT△C1OB内,OC1=1,BC1=√3.故sin∠C1BO=√3/3