连结BD,由AE+DE=m,AE+CF=m,得DE=CF;由菱形ABCD中,∠DAB=60°,得三角形BCD和三角形ABD都是等边三角形,所以BD=BC,从而可证得三角形BDE全等于三角形BCF,所以BE=BF,∠EBD=∠FBC,所以∠EBF=DBC=60°,所以,△BEF是等边三角形
三角形EBF的面积=1/2BE*BF*sin∠EBF,BE=BF.只要BE或BF最短就行了...BE最短为菱形的高为二分之根号三M
连结BD,由AE+DE=m,AE+CF=m,得DE=CF;由菱形ABCD中,∠DAB=60°,得三角形BCD和三角形ABD都是等边三角形,所以BD=BC,从而可证得三角形BDE全等于三角形BCF,所以BE=BF,∠EBD=∠FBC,所以∠EBF=DBC=60°,所以,△BEF是等边三角形
三角形EBF的面积=1/2BE*BF*sin∠EBF,BE=BF.只要BE或BF最短就行了...BE最短为菱形的高为二分之根号三M