f(x)=x³+bx²+cx+d
f'(x)=3x²+2bx+c
f(0)=d=2
f'(-1)=3-2b+c
f(-1)=-1+b-c+d=b-c+1
过(-1,f(-1)的切线方程为y=(3-2b+c)(x+1)+b-c+1
即y=(3-2b+c)x+4-2b
点M(-1,f(-1))处的切线方程为6x-y+7=0
所以3-2b+c=6 ,4-2b=7
解得b=-3/2 ,c=0,d=2
f(x)解析式为f(x)=x³-3x²/2+2
f(x)=x³+bx²+cx+d
f'(x)=3x²+2bx+c
f(0)=d=2
f'(-1)=3-2b+c
f(-1)=-1+b-c+d=b-c+1
过(-1,f(-1)的切线方程为y=(3-2b+c)(x+1)+b-c+1
即y=(3-2b+c)x+4-2b
点M(-1,f(-1))处的切线方程为6x-y+7=0
所以3-2b+c=6 ,4-2b=7
解得b=-3/2 ,c=0,d=2
f(x)解析式为f(x)=x³-3x²/2+2