证明:
∵BF//AC
∴∠CBF=∠ACD=90°
∴∠CAD+∠CDA=90°
∵CE⊥AD
∴∠CED=90°
则∠BCF+∠CDA =90°
∴∠CAD =∠BCF
又∵AC=BC
∴△ACD≌△CBF(ASA)
∴CD=BF
∵D是BC的中点
∴BC=2CD=2BF
∴AC=2BF
证明:
∵BF//AC
∴∠CBF=∠ACD=90°
∴∠CAD+∠CDA=90°
∵CE⊥AD
∴∠CED=90°
则∠BCF+∠CDA =90°
∴∠CAD =∠BCF
又∵AC=BC
∴△ACD≌△CBF(ASA)
∴CD=BF
∵D是BC的中点
∴BC=2CD=2BF
∴AC=2BF