向量ab=(-3)*2+2=-4.
|a|^2=(-3)^2+2^2=13.
|b|^2=2^2+1=5,
|a+tb|=√(a^2+t^2*b^2+2tab)=√(5t^2-8t+13)
=√[5(t-8/10)^2+49/5]
要使|a+tb|最小,则t=8/10=4/5,
|a+tb|最小值=√(49/5)=7√5/5.
2.若a-tb与c共线,则有
令,a-tb=mc,
a-tb=(-3-2t,2-t)
mc=(3m,-m).
-3-2t=3m,
2-t=-m.
解方程,得
t=3/5,m=-7/5.
则,实数t=-7/5.