⑴DE⊥BG,DE=2AM.
理由:∵DA⊥AB,∴DE⊥AM,
设大小正方形的边长分别为a、b,
则AM=1/2(a+b)-b=(a-b)/2,而DE=a-b
∴DE=2AM.
⑵结论依然成立.
理由:延长AM到N使MN=AM,连接BN、GN,
∵BM=GM,∴四边形ABGN是平行四边形,∴BN=AG=AE,BN∥AG,
∴∠GAX=∠NBA(X在BA的延长线上),而∠GAX+∠GAD=∠EAD+∠GAD=90°,
∴∠GAX=∠EAD,∴∠EAD=∠NBA,又AB=AD,
∴ΔEAD≌ΔNBA,∴AN=DE,∠EDA=∠NAB,∴DE=2AM,
设DE交AB于P,则∠EDA+∠DPA=90°,∴∠MAB+∠DPA=90°,
∴AN⊥DP,即:AM⊥DE.