(1) f(x)=4cos(x+π/6)/(6 + cos2x - √3sin2x )+2
=4cos(x+π/6)/(6 + 2cos(2x+π/3))+2
=2cos(x+π/6)/(3 + cos(2x+π/3))+2
(2)又f(x)的图像按向量a=(π/6,-2)平移,得到函数g(x)的图像
所以g(x)=2cosx/(3+cos2x)
易知g(x)的定义域为R,则在R上
g'(x)=(-2sinx(3+cos2x)+4cosxsin2x)/(3+cos2x)^2
=-2sinx(3+cos2x-4(cosx)^2)/(3+cos2x)^2
-4(sinx)^3/(3+cos2x)^2
易知sinx在[-π/2,0)上小于0;在(0,π/2]上是大于0,
(3+cos2x)^2恒大于0
所以在[-π/2,0)上,g'(x)>0,在(0,π/2]上g'(x)