解题思路:先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PA|≥|AF|,再求出|AF|的值即可.
依题设P在抛物线准线的投影为P',抛物线的焦点为F,则 F(
1
2,0),
依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,
则点P到点A(0,2)的距离与P到该抛物线准线的距离之和
d=|PF|+|PA|≥|AF|=
(
1
2)2+22=
17
2.
故答案为:
17
2.
点评:
本题考点: 抛物线的简单性质.
考点点评: 本小题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.