配凑法:
f(x-1)=f[(2*(x/2)-1]=f[(2*(x/2-1)+1]=3(x/2-1)²=3/4(x-2)²
换元法;
令t=2x+1
x=(t-1)/2
f(t)=3/4(t-1)²
再令t=x-1
f(x-1)=3/4(x-1-1)²=3/4(x-2)²
配凑法:
f(x-1)=f[(2*(x/2)-1]=f[(2*(x/2-1)+1]=3(x/2-1)²=3/4(x-2)²
换元法;
令t=2x+1
x=(t-1)/2
f(t)=3/4(t-1)²
再令t=x-1
f(x-1)=3/4(x-1-1)²=3/4(x-2)²