解题思路:已知A(-1,0),对称轴为x=1,根据抛物线的对称性可知抛物线与x轴另一交点是(3,0),设交点式,将B(0,-3)代入求a即可.
∵抛物线过点A(-1,0),对称轴为x=1,
∴抛物线与x轴另一交点是(3,0),
设抛物线解析式为y=a(x+1)(x-3),
将B(0,-3)代入,得a=1,
∴y=(x+1)(x-3),
即y=x2-2x-3.
点评:
本题考点: 待定系数法求二次函数解析式.
考点点评: 本题考查了用待定系数法求二次函数解析式的方法.关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax2+bx+c(a≠0);顶点式y=a(x-h)2+k,其中顶点坐标为(h,k);交点式y=a(x-x1)(x-x2),抛物线与x轴两交点为(x1,0),(x2,0).