f(x)=ln(x+1)-x+x^2/2
f'=1/(x+1)-1+x=(x^2+x-x-1+1)/(x+1)=(x^2)/(x+1)
当x>0时,f'=(x^2)/(x+1)>0
f(x)=ln(x+1)-x+x^2/2递增
f(x)>f(0)=0
即:ln(x+1)-x+x^2/2>0
ln(1+x)>x-x2/2
f(x)=ln(x+1)-x+x^2/2
f'=1/(x+1)-1+x=(x^2+x-x-1+1)/(x+1)=(x^2)/(x+1)
当x>0时,f'=(x^2)/(x+1)>0
f(x)=ln(x+1)-x+x^2/2递增
f(x)>f(0)=0
即:ln(x+1)-x+x^2/2>0
ln(1+x)>x-x2/2