f(x)=(1/3)x³-(1/2)ax²+(a-1)x+1
则:
f'(x)=x²-ax+(a-1)=[x-1]×[x-(a-1)]
【1】
(1)若a>2,则函数f(x)在(-∞,1)上递增,在(1,a-1)上递减,在(a-1,+∞)上递增;
(2)若a=2,则函数f(x)在(-∞,+∞)上递增;
(3)若a
f(x)=(1/3)x³-(1/2)ax²+(a-1)x+1
则:
f'(x)=x²-ax+(a-1)=[x-1]×[x-(a-1)]
【1】
(1)若a>2,则函数f(x)在(-∞,1)上递增,在(1,a-1)上递减,在(a-1,+∞)上递增;
(2)若a=2,则函数f(x)在(-∞,+∞)上递增;
(3)若a