(1)
△ABC的面积=1/2*ab*sinC=√3
ab=4
余弦定理
cosC=(a^2+b^2-c^2)/(2ab)=1/2
a^2+b^2-4=4
a^2+b^2=8
与ab=4联立解得
a=2,b=2
(2)
sinB=2sinA
正弦定理得
b=2a
余弦定理得
cosC=(a^2+b^2-c^2)/(2ab)=1/2
a^2+4a^2-4=2a^2
3a^2=4
a^2=4/3
ab=2a^2=8/3
△ABC的面积=1/2*ab*sinC=1/2*8/3*√3/2=2√3/3
(1)
△ABC的面积=1/2*ab*sinC=√3
ab=4
余弦定理
cosC=(a^2+b^2-c^2)/(2ab)=1/2
a^2+b^2-4=4
a^2+b^2=8
与ab=4联立解得
a=2,b=2
(2)
sinB=2sinA
正弦定理得
b=2a
余弦定理得
cosC=(a^2+b^2-c^2)/(2ab)=1/2
a^2+4a^2-4=2a^2
3a^2=4
a^2=4/3
ab=2a^2=8/3
△ABC的面积=1/2*ab*sinC=1/2*8/3*√3/2=2√3/3