(1)连结AE,OE,因空间四边形OABC各边以及AC,BO的长都是1,
D,E是OA,BC的中点,所以,OE=AE=(√3)/2,所以三角形OEA是等腰三角形.
所以DE⊥AO,
因此,DE=√(OE^2-OD^2)= √(3/4-1/4)= (√2)/2.
(2)因AE,OE都⊥BC,所以BC⊥面AOE,因此面ABC⊥面AOE.
在面AOE中,作OF⊥AE,则OF⊥面ABC,所以,OF的长即为点O到面ABC的距离.
因AOE是等腰三角形,DE是底AO上的高,OF是AE边上的高,由面积公式得:
(1/2)AO*DE=(1/2)AE*OF,即(1/2)*1*(√2)/2=(1/2) *(√3)/2*OF,
解得.OF=(√6)/3,所以点O到平面ABC的距离是(√6)/3.
以上供参考.