令t=√(1+x) (t>=0)
则x=t²-1
f(t)=-3(t²-1)+t
=-3t²+t+3
=-3(t²-t/3+1/36)+1/12+3
=-3(t-1/6)²+37/12
当t=1/6时f(1/6)max=37/12
所以函数值域(-∞,37/12]
令t=√(1+x) (t>=0)
则x=t²-1
f(t)=-3(t²-1)+t
=-3t²+t+3
=-3(t²-t/3+1/36)+1/12+3
=-3(t-1/6)²+37/12
当t=1/6时f(1/6)max=37/12
所以函数值域(-∞,37/12]