因为关于X的方程kX²-2(k+2)x+k+5=0没有实数根 所以得到△=4(k+2)^2-4k(k+5)
=4(k^2+4k+4)-4k^2-20k=-4k+164
因为y关于x的函数y=(k-5)x²-2(k+2)x+k的△=4(k+2)^2-4k(k-5)=36k+16
因为k>4 所以36k+16>0 所以y=(k-5)x²-2(k+2)x+k的△>0
所以方程(k-5)x²-2(k+2)x+k=0的解有两个
所以y=(k-5)x²-2(k+2)x+k的图像与x轴肯定有交点 交点个数为2