t小于0,求y=(t^2-4t+1)/t的最大值
2个回答
y=(t²-4t+1)/t=[t+(1/t)]-4
因t0,所以:(-t)+(-1/t)≥2,则t+1/t≤-2,所以,y≤-2-4=-6,即y的最大值是-6
相关问题
y=100t^2-t^3(0小于t小于100),求函数最大值
t>0,y=(t^2-4t+1)/t的最小值是
求(t+1)(9t+1)/(3t+1)^2最大值(t>0)
求(1+t)*(27t+3)/((1+3t)^2)的最大值 t〉=0
f(t)=1/4t(t∧2-3),t属于【-1,3】,求f(t)的最大值与最小值
y最小值为0,x2+(2t+1)x+t2-1=0,求t
已知t>0,则函数y=t2−4t+1t的最小值为______.
-2m-n+1=0,T=mn,求T最大值
求t+ 1/t的最大值怎么求?(t∈[ 根号2/2,1].)
怎么求二次函数y=2t^2+4t的最大值?