1/sin50°+√3/cos50°
=(cos50°+√3sin50°)/(sin50°*cos50°)
=2*[(1/2)cos50°+(√3/2)*sin50°]/(sin50°*cos50°)
=2*sin(30+50)°/(1/2)*sin100°
=4*sin80°/sin100°
=4*sin100°/sin100°
=4
1/sin50°+√3/cos50°
=(cos50°+√3sin50°)/(sin50°*cos50°)
=2*[(1/2)cos50°+(√3/2)*sin50°]/(sin50°*cos50°)
=2*sin(30+50)°/(1/2)*sin100°
=4*sin80°/sin100°
=4*sin100°/sin100°
=4