线性代数 考研真题设A为4*3的矩阵,η1η2η3是非齐次线性方程组AX=β的3个线性无关的解,k1k2为任意常数,则A
1个回答
η1 η2 η3任意一个都是 Ax=β的特解,答案 1/2(η2-η3)有误,可以改成η1 η2 η3任意一个,其中
(η2-η3)是Ax=0的解
相关问题
设η1,η2是非齐次线性方程组AX=b的解,又已知k1η1+k2η2也是AX=b的解,则k1+k2=?
设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 aη1+bη2 ..
设n阶方阵A的秩为n-1,η1,η2是非齐次线性方程组AX=β的两个解,则齐次线性方程组AX=0的通解可表示为?
线性代数:设4元非齐次线性方程组系数矩阵的秩为3,若η1,η2 为该方程组的两个解向量,则该方程组的通解为?
设3元线性方程组Ax=b,A的秩为2,η1,η2,η3为方程组的解,η1+η2=(2,0,4)T,η1+η3=(1,-2
考研线性代数基础解系方面的问题η1-η2,η1-η3,是AX=0的解,并且不成比例,η2-η3也是AX=0的解,与前两个
设4阶矩阵A的秩为3,η1,η2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为
向量组 等价 线性代数设 η∗ 是非齐次线性方程组 Ax = b 的一个解,ξ1,··· ,ξn−
假设是η1,η2,η3齐次线性方程组Ax=θ的基础解系.证明向量组η1+η2,η2+η3,η3+η1也是Ax=θ的基础解
设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为