(1)∵定义域内任意x、y恒有f(xy)=f(x)+f(y),
令x=y=1,
∴f(1)=2f(1),
∴f(1)=0;(2分)
证明:(2)任取0<x1<x2,则
x2
x1>1,则题意得f(
x2
x1)>0
又定义域内任意x、y恒有f(xy)=f(x)+f(y),∴f(xy)-f(y)=f(x),
∴f(x2)-f(x1)=f(
x2
x1)>0
∴f(x2)>f(x1)
∴函数f(x)在其定义域内为增函数,由(1)和f(1)=0,
所以1为方程f(x)=0的一个实根,若还存在一个x0,且x0>0,使得f(x0)=0,
因为函数f(x)在其定义域内为增函数,必有x0=1,故方程f(x)=0有且仅有一个实根;(8分)
(3)由(2)知函数f(x)在其定义域内为增函数
当x∈[1,+∞)时,不等式f(
x2+2x+a
x)>0=f(1)恒成立,即
x2+2x+a
x>1恒成立
即x2+2x+a>x,即a>-x2-x在x∈[1,+∞)时恒成立
∵-x2-x在x∈[1,+∞)时最大值为-2
∴a>-2(14分)