由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
∴b=1,k+b=2
解得k=1.b=1
∴y=x+1,
令y=0,得0=x+1,
解得x=﹣1.
∴点P的坐标是(﹣1,0).
故答案为(﹣1,0).
由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.
设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),
∴b=1,k+b=2
解得k=1.b=1
∴y=x+1,
令y=0,得0=x+1,
解得x=﹣1.
∴点P的坐标是(﹣1,0).
故答案为(﹣1,0).