设2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
则2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
2x^4-x^3+ax^2+3x+b=2x^4+mx^3-4x^3+b/2x^2-2mx^2+4x²-bx++2mx+b
2x^4-x^3+ax^2+3x+b=2x^4+(m-4)x^3+(b/2-2m+4)x^2+(2m-b)x+b
{m-4=-1
b/2-2m+4=a
2m-b=3
解得:m=3,b=3,a=-1/2
设2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
则2x^4-x^3+ax^2+3x+b=(x^2-2x+2)(2x²+mx+b/2)
2x^4-x^3+ax^2+3x+b=2x^4+mx^3-4x^3+b/2x^2-2mx^2+4x²-bx++2mx+b
2x^4-x^3+ax^2+3x+b=2x^4+(m-4)x^3+(b/2-2m+4)x^2+(2m-b)x+b
{m-4=-1
b/2-2m+4=a
2m-b=3
解得:m=3,b=3,a=-1/2