z=[(1+√3)+(1-√3)i]/(4+4i)
z^2=[(4+2√3)+2(1-3)i-(4-2√3)]/(16+32i-16)
=(4√3-4i)/(32i)
=(√3-i)/(8i)
=-(1+√3i)/8
1/z=(4+4i)/[(1+√3)+(1-√3)i]
=(4+4i)[(1+√3)-(1-√3)i]/[(1+√3)+(1-√3)i][(1+√3)-(1-√3)i]
=[(4+4√3)+(4-4√3)+(4+4√3)i-(4-4√3)i]/[(4+2√3)+(4-2√3)]
=(8+8√3i)/8
所以原式=(7+7√3i)/8