cosA=11/14,则,sinA=√[1-(11/14)^2]=5√3/14
cosB=13/14,则,sinB=√[1-(13/14)^2]=3√3/14
cosC
=cos[180-(A+B)]
=-cos(A+B)]
=sinAsinB-cosAcosB
=(5√3/14)(3√3/14)-(11/14)(13/14)
=45/14^2-163/14^2
=-118/196
=59/98
cosA=11/14,则,sinA=√[1-(11/14)^2]=5√3/14
cosB=13/14,则,sinB=√[1-(13/14)^2]=3√3/14
cosC
=cos[180-(A+B)]
=-cos(A+B)]
=sinAsinB-cosAcosB
=(5√3/14)(3√3/14)-(11/14)(13/14)
=45/14^2-163/14^2
=-118/196
=59/98