A=30°=1/6π.所以B=5/6π-C,由正弦定理得:c/b=sinC/sinB,所以(1+√3)sinC=2sinB.
因为sinB=sin(5/6π-C),
由差角公式得:sin(5/6π-C)=sin5/6π·cosC-cos5/6π·sinC=1/2·cosC+√3/2·sinC,带入(1+√3)sinC=2sinB得:
(1+√3)sinC=cosC+√3sinC,化简得sinC=cosC.因为C<180°,所以C=45°.
A=30°=1/6π.所以B=5/6π-C,由正弦定理得:c/b=sinC/sinB,所以(1+√3)sinC=2sinB.
因为sinB=sin(5/6π-C),
由差角公式得:sin(5/6π-C)=sin5/6π·cosC-cos5/6π·sinC=1/2·cosC+√3/2·sinC,带入(1+√3)sinC=2sinB得:
(1+√3)sinC=cosC+√3sinC,化简得sinC=cosC.因为C<180°,所以C=45°.