如果函数y=3cos(2x+φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为 ___ .

1个回答

  • 解题思路:利用函数的对称中心,求出φ的表达式,然后确定|φ|的最小值.

    ∵函数y=3cos(2x+φ)的图象关于点(

    3,0)中心对称,

    ∴2•

    3+φ=kπ+

    π

    2,得φ=kπ-

    13π

    6,k∈Z,由此得|φ|min=

    π

    6.

    故答案为:[π/6]

    点评:

    本题考点: 余弦函数的对称性.

    考点点评: 本题是基础题,考查三角函数中余弦函数的对称性,考查计算能力,对于k的取值,确定|φ|的最小值,是基本方法.