设B点坐标(x1,y1),
x1^2/2+y1^2=1,
x1^2=2-2y1^2,
AB=√[x1^2+(y1-1)^2]
=√[2-2y1^2+(y1-1)^2]
=√[3-y1^2-2y1]
=√[-(y1+1)^2+4],
当y1=-1时,AB有最大值为2,
x1^2=2-2=0,
∴B(0,-1),
B在下顶点位置.
设B点坐标(x1,y1),
x1^2/2+y1^2=1,
x1^2=2-2y1^2,
AB=√[x1^2+(y1-1)^2]
=√[2-2y1^2+(y1-1)^2]
=√[3-y1^2-2y1]
=√[-(y1+1)^2+4],
当y1=-1时,AB有最大值为2,
x1^2=2-2=0,
∴B(0,-1),
B在下顶点位置.