证明1当n=1时,左边=1*1!=1,右边=(1+1)!-1=2-1=1
即左边=右边
2假设n=k(k≥1)是结论成立
即1•1!+2•2!+...+k•k!=(k+1)!-1
那么当n=k+1时,
1•1!+2•2!+...+k•k!+(k+1)(k+1)!
=(k+1)!-1+(k+1)(k+1)!
=(k+1)!+(k+1)(k+1)!-1
=[1+(k+1)](k+1)!-1
=(k+2)(k+1)!-1
=(k+2)!-1
=(k+1+1)!-1
即n=k+1式结论成立
故综上知原命题成立.