如果m、n是两个不相等的实数,且满足m2-2m=1,n2-2n=1,那么代数式2m2+4n2-4n+1994=_____

1个回答

  • 解题思路:主要利用根与系数的关系得出m+n=2,把所求的代数式变形得出关于m+n的形式,整体代入即可求值.

    根据题意可知m,n是x2-2x-1=0两个不相等的实数根.

    则m+n=2,

    又m2-2m=1,n2-2n=1

    2m2+4n2-4n+1994

    =2(2m+1)+4(2n+1)-4n+1994

    =4m+2+8n+4-4n+1994

    =4(m+n)+2000

    =4×2+2000

    =2008.

    点评:

    本题考点: 整式的加减—化简求值.

    考点点评: 主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于n,m的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.