设弦与椭圆的交点为A(x1,y1),B(x2,y2),中点M(x0,y0)
由条件,得 k=(y2-y1)/(x2-x1)=3,且 (x1+x2)/2=x0=1/2
又 A、B在椭圆上,
所以 x1²+3y1²=75 (1)
x2²+3y2²=75 (2)
(2)-(1),得 (x2-x1)(x1+x2)+3(y2-y1)(y1+y2)=0
即 (y2-y1)/(x2-x1)=-(x1+x2)/[3(y1+y2)]
3=-1/3(y1+y2)
y1+y2=-9
y0=-9/2
所以 M(1/2,-9/2)