如图,∵OE⊥AB,垂足为O,
∴∠AOE=∠BOE=90°.
又∵∠AOC=∠DOB,∠AOC+∠COE=90°,
∴∠DOE=∠BOE+∠DOB=90°+∠90°-∠COE=180°-∠COE.
∵∠DOE=3∠COE,即180°-∠COE=3∠COE,
∴∠COE=45°,
∴∠BOC=90°+∠COE=135°.
故答案是:135°.
如图,∵OE⊥AB,垂足为O,
∴∠AOE=∠BOE=90°.
又∵∠AOC=∠DOB,∠AOC+∠COE=90°,
∴∠DOE=∠BOE+∠DOB=90°+∠90°-∠COE=180°-∠COE.
∵∠DOE=3∠COE,即180°-∠COE=3∠COE,
∴∠COE=45°,
∴∠BOC=90°+∠COE=135°.
故答案是:135°.