由正弦定理得:a/sinA=b/sinB=c/sinC=2R (R为△ABC 外接圆的半径)
则:a=2R sinA,b=2R sinB ,
2R = c/sinC = (√2+√6)/ sin30° = 2(√2+√6)
∵ C=30°,A + B = 150°
∴ A=150°-B,且 0°<B<150°
∴ a+b = 2R (sinA + sinB)
= 2R [sin(150°-B) + sinB] ( 注:sin(150°-B)=sin150°cosB - cos150°sinB )
= (√2+√6) × [cosB+(√3+2)sinB]
= [(√2+√6)的平方] × [(√6--√2)/4?cosB + (√6--√2)/4?sinB]
= (8+4√3) × sin(15°+B)
∵ 0° < B < 150°
∴15°< (B+15°) < 165°
∴ sin15° < sin(B+15°) ≤1
∴ [(√6-√2)/4] < sin(B+15°) ≤ 1
∴ [(√6-√2)/4] ×(8+4√3) < [(8+4√3) × sin(15°+B)] ≤ (8+4√3)
∴ (√2+√6)<(a+b) ≤(8+4√3)
祝您学习顺利!